Insights into the environmental pressures driving adaptation in *Drosophila melanogaster*

María Bogaerts Márquez

6th October 2020

Introduction

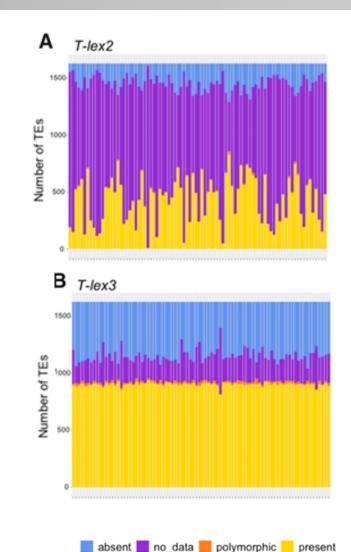
- How organisms adapt to their environments
- The role of Transposable Elements in adaptation
- Combining *omics* approaches with molecular and phenotypic analysis
- Mainly in *Drosophila melanogaster* but also in *Anopheles* and humans

Barcelona, Spain

• Rech GE *et al.* 2019. Stress response, behavior, and development are shaped by transposable element-induced mutations in *Drosophila*. *PLoS Genet.*, 15(2), e1007900. doi:10.1371/journal.pgen.1007900

• **Bogaerts-Márquez M** *et al.* 2019. T-lex3: an accurate tool to genotype and estimate population frequencies of transposable elements using the latest short-read whole genome sequencing data. *Bioinformatics*. doi:10.1093/bioinformatics/btz727

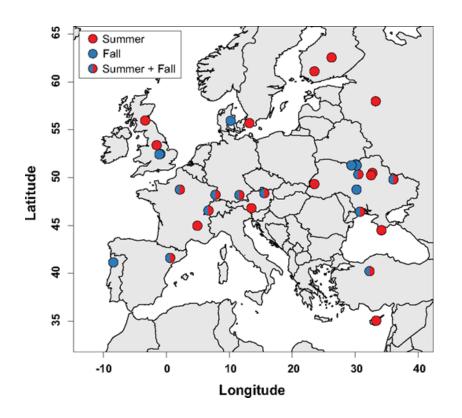
• Kapun M *et al.* 2020. Genomic analysis of European *Drosophila melanogaster* populations reveals longitudinal structure, continent-wide selection, and previously unknown DNA viruses. *Mol. Biol. Evol.* doi:10.1093/molbev/msaa120


TE	iHS		H	H12		nSL	
	NA	EU	NA	EU	NA	EU	Fst
FBti0019627 FBti0020057 FBti0020096 FBti0020096 FBti0019453 FBti0019457 FBti0019457 FBti0019457 FBti0019632 FBti0019651 FBti0019601 FBti0019601 FBti0019079 FBti0019279 FBti0019279 FBti0019279 FBti0019657 FBti0020116 FBti0020116 FBti0020165			••••••••••••••••••••				OOA
FBti0019112 FBti0018880 FBti0019875 FBti0020114 FBti0020114 FBti0019010 FBti0019372 FBti0019613 FBti0019617 FBti0061417 FBti0061417 FBti0061417 FBti0061506 FBti0019378 FBti0019071 FBti0019711 FBti0020146			••••••••••••••••	000000000000000000000000000000000000000			AF-OOA
FBti0020146	0	0		0	0	0	NA-AF

Sig. No Sig. 🔿 ND

• Rech GE *et al.* 2019. Stress response, behavior, and development are shaped by transposable element-induced mutations in *Drosophila*. *PLoS Genet.*, 15(2), e1007900. doi:10.1371/journal.pgen.1007900

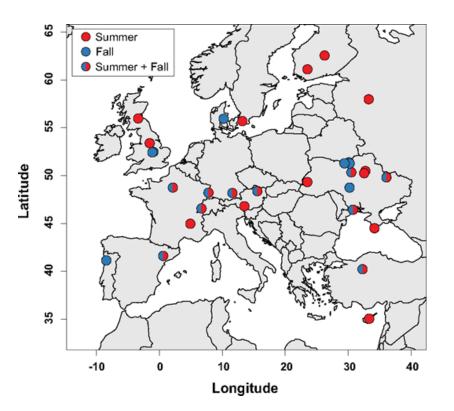
• **Bogaerts-Márquez M** *et al.* 2019. T-lex3: an accurate tool to genotype and estimate population frequencies of transposable elements using the latest short-read whole genome sequencing data. *Bioinformatics*. doi:10.1093/bioinformatics/btz727


• Kapun M *et al.* 2020. Genomic analysis of European *Drosophila melanogaster* populations reveals longitudinal structure, continent-wide selection, and previously unknown DNA viruses. *Mol. Biol. Evol.* doi:10.1093/molbev/msaa120

• Rech GE *et al.* 2019. Stress response, behavior, and development are shaped by transposable element-induced mutations in *Drosophila*. *PLoS Genet.*, 15(2), e1007900. doi:10.1371/journal.pgen.1007900

• **Bogaerts-Márquez M** *et al.* 2019. T-lex3: an accurate tool to genotype and estimate population frequencies of transposable elements using the latest short-read whole genome sequencing data. *Bioinformatics*. doi:10.1093/bioinformatics/btz727

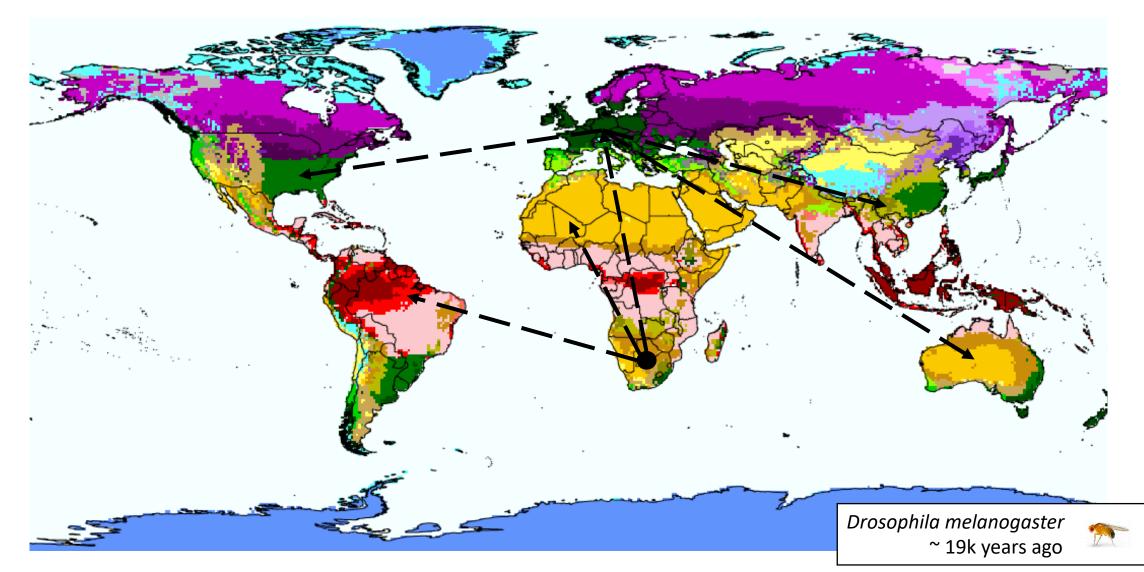
• Kapun M *et al.* 2020. Genomic analysis of European *Drosophila melanogaster* populations reveals longitudinal structure, continent-wide selection, and previously unknown DNA viruses. *Mol. Biol. Evol.* doi:10.1093/molbev/msaa120



Previous work

Selective Sweeps in DrosEU 2014 populations

- Pool-hmm (Boitard et al. 2013)
 - Identifies candidate sweep regions via distortions in the allele frequency spectrum
- 30/48 samples \rightarrow 19 populations
- Well supported sweeps: *wapl*, HDAC6, Hen1, CR18217, *mgl*, *phantom*, *Cyp18a1* and *Cy6g1*
- 64 genes in sweeps detected in 19 populations
 - 52 were located in the 10% of regions with the lowest values of Tajima's *D*
 - 43 were located in regions with reduced Tajima's *D* (lowest 10%) in African populations



Insights into the environmental pressures driving adaptation in *Drosophila melanogaster*

First part

Introduction

Koppen-Geiger climate distribution: Rubel & Kottek 2010

European 2014 samples and North American East coast

- Drosophila melanogaster
- Males
- Pool-sequenced samples

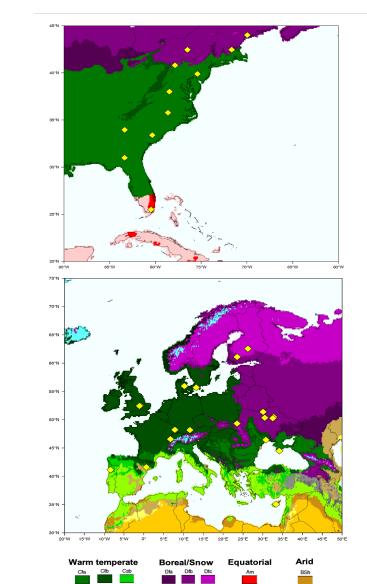
North America (Machado et al. 2019)

- 11 samples from 11 locations in North American East coast (collection 2003-2014)
- ~ 2.4 M SNPs
- 344 Referenced Transposable Elements

Europe (Kapun et al. 2020)

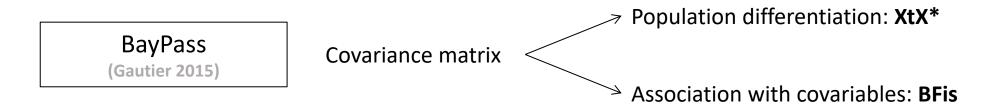
• 26 samples from 20 locations in Europe (collection 2014)

Europe:


- 20 samples
- ~ 3 M SNPs
- 302 TEs

Europe Summer:

- 14 samples
- ~ 2.8 M SNPs
 264 TEs


Europe Fall: • 10 samples

- ~ 2.8 M SNPs
- 276 TEs

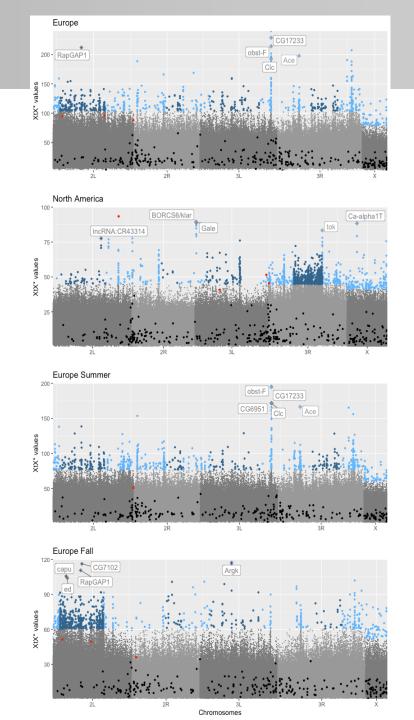
European 2014 samples and North American East coast

The Method:

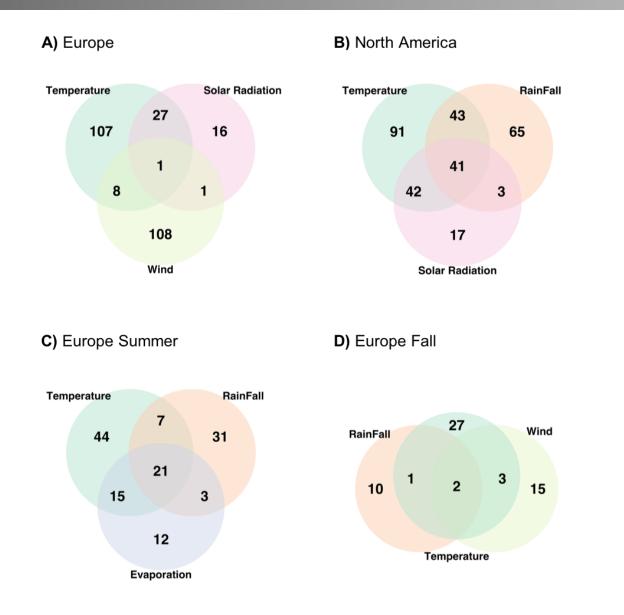
• Long-term: average 1970-2000

19 Standard Bioclimatic Variables:

Temperature Rainfall • Year-specific: one year before collection date



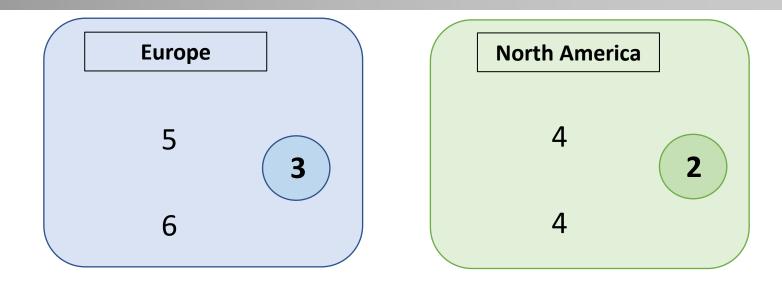
ECMWF


Temperature Rainfall Evaporation Solar Radiation Wind Soil Daylight hours

Population differentiation: XtX*

- Significance threshold: **top 0.05%**
 - SNPs in gene body and in regulatory regions
- Genes known to play a role in adaptation: *sgg, cpo, Ace* and *mth*
- *In(2L)t* enriched in **Europe** and **Europe Fall** and *In(3R)P* enriched in **North America**
- GO enrichment main clusters: development, signaling, morphogenesis
- 55 candidate genes significantly overlapping between North America and Europe (SuperExactTest < 0.05)
 - 19/55 not reported in other clinal studies
 - GO enriched clusters: regulation, signaling and response to stimulus and development

Association with environmental variables: BFis



- Significance threshold: Bfis > 30
 - SNPs in gene body and in regulatory regions
- 748 candidate genes among the four data sets
 - Temperature: 400
 - Rainfall: 241
 - Evaporation: 153
 - Solar Radiation: 153
 - Wind: 226
 - Soil: 4
 - Daylight hours: 73
- 32 candidate genes significantly overlapping between North America and Europe (SuperExactTest < 0.05)
 - 12/32 not reported in other clinal studies
- 289 genes not shown in population differenciation

Transposable elements

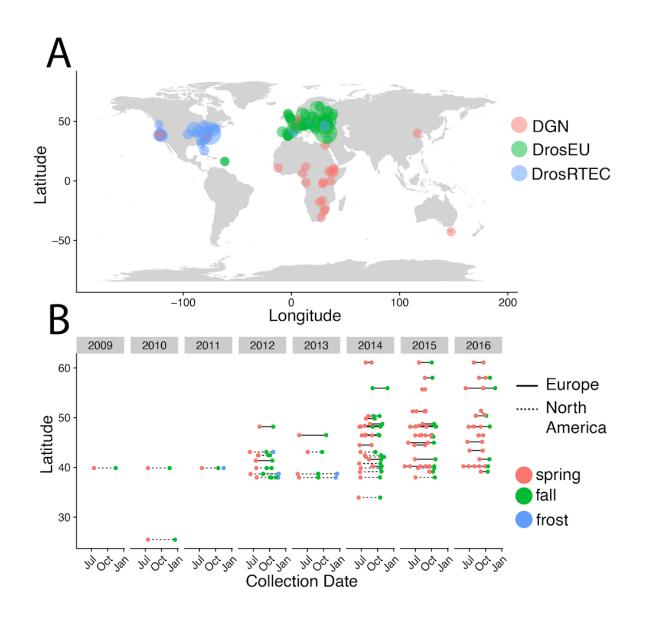
Population differenciation (XtX*)

Association with an environmental variable

FBti0019112

- Previous signatures of selection: iHS, nLS, H12
- First intron *lilli* gene
- Population differentiation in Europe and Europe Fall
- Association with environmental variables in Europe: Temperature

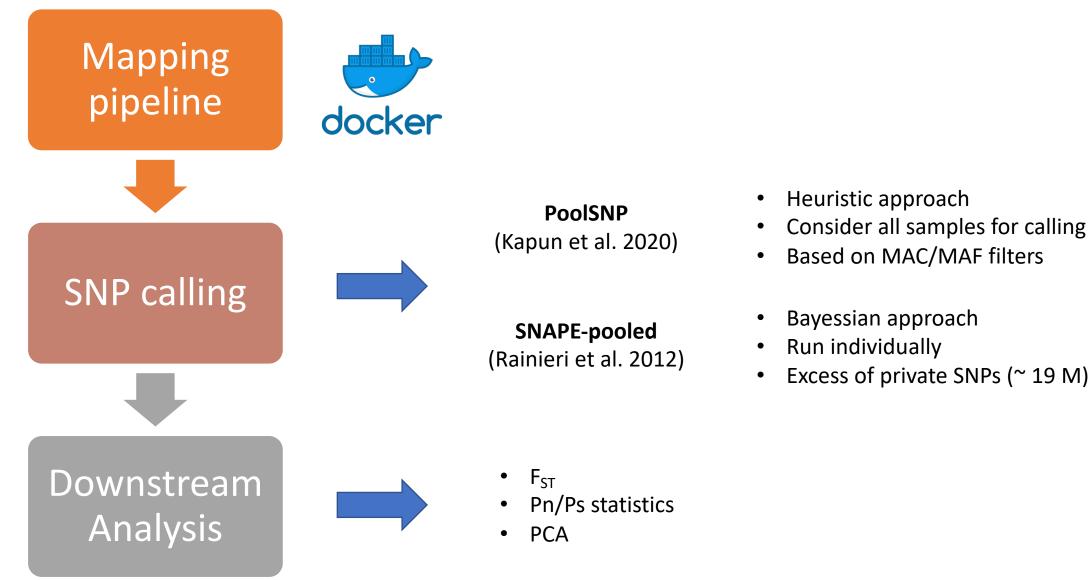
FBti0061428


- Previous signatures of selection: no
- Upstream/downstream CG31809/CG6012
- Population differentiation in North America
- Association with environmental variables in North America: Wind

- In addition to the already studied variables related to temperature and rainfall, wind could be a putative environmental pressure which plays a role in adaptation
- Wind variables showed small overlap with other variables
- **GEA analysis** are needed to find other adaptive signatures which are **not** explained by population differentiation patterns
 - Limited to the **variables** used and how they are involved in the population structure
 - Limited to the strongest outliers
- Transposable elements which may play a role in adaptation
 - Lab experiments needed
 - Too limited because of the reference annotation: **non-reference TEs needed**

Insights into the environmental pressures driving adaptation in *Drosophila melanogaster*

Second part


Drosophila Evolution in Space and Time

DEST data set: Drosophila Evolution in Space and Time

- Pool-seq sequenced *Drosophila melanogaster*
- 169 European Populations (DrosEU)
- 77 North American Populations (Dros-RTEC)
- 26 Drosophila melanogaster Nexus (Lack et al.
 2016): single-individual sequencing data from several ancestral African populations

Drosophila Evolution in Space and Time

Drosophila Evolution in Space and Time

- Study seasonality using C2 BayPass contrast test in Summer/Fall samples
- Study changes in the same population in time (i.e. same population collected in three consecutive years)
- Study environmental association
 - $\circ~$ Global adaptation
 - Continent-specific adaptation
 - Focusing in one specific variable
- Transposable elements
 - Reference transposable elements
 - Non-reference transposable elements
 - O TEMP (Zhuang et al. 2014)
 - O Tidal (Rahman et al. 2015)

Thank you

